Lessons Learned Using
PostgreSQL

A tale of a monolith, large tables, default settings and 2 dbs
later

FIVESTARS §°

- React Ff Jinja

L
25

NGULARJS

by Google

< Tornado

Postgre SQL @1331{
%¢ elastic @ Celery BaRabbit!VIC

&P redis wamazn | WSG| NGiMX

Followers
I

Use a read follower for....READS....

. explicitly in code Model.objects.
using(follower).get(...
« Uusing db routers in django

9

—

_—
-
-zl

https://docs.djangoproject.com/en/1.9/topics/db/multi-db/

Load impact of using a follower aggressively

Before

Read Oper

Statistic: Average

8,000

PAmnEN

(7,000)
g 7

-~

6,000
5,000
4,000
3,000
2,000
1,000

a
08/07
00:00

Write Latency (ms)

Statistic:

800
700
800
500
400
300

200

06/08
00:00

Average v

Time Range:

06/09
00:00

w

08/07
00:00

(Count/ d w

Time Range:

06/08
00:00

Last 2 Weeks ~

06/11
00:00

0813
00:00

Last 2 Weeks v

06/09
00:00

After

Read Operations (Count/Second) w

1)
o

Period: 5 Minutes ~ Statistic: = Average Vv Time Range: Last1 Week

4,000
AT~

3500
N

~ -

3,000
2,500

2,000

1,500

1,000

500

M Y

0617
00:00

0
07/20
00:00

08/15
00:00

0819
00:00

07/21
00:00

07/22
00:00

07/23
00:00

Write Latency (ms) v
S

Statistic: ~ Average ¥ Time Range: Last1 Week

Period: 5 Minutes v

500

P

~

We managed to reduce ReadlOPS from peaks around 7k to
peaks around 3k!

And write latency, our bottleneck metric for master DB, seemed
to decrease from hovering around 70-80 ms to 50-60ms. Not
the biggest boost expected

06/10
00:00

07/20
00:00

07/21
00:00

07/22
00:00

07/23
00:00

08/11
00:00

06/12
00:00

0613
00:00

0614
00:00

©
Jo

Period: 1 Minute v

07724 07/25 07/26

00:00 00:00 00:00
|
S Q
Period: 1 Minute v
| — —
07/24 07/25 07/26
00:00 00:00 00:00

LOGGING
I

LOG ALL THE THINGS

. well, not really

. log the things that are important to
you

. we log any SQL statement that
takes longer than 2 seconds

« We can set alerts on the numbers of
these

« oOrjust review and optimize

FiveStars Admin Portal

DJANGO ADMIN Site administration
I
Api clients dAdd ¢ Change
Cfd statuss dAdd ¢ Change
o Super useful as a flrst tool Connect clients dAdd Change
. Super dangerous as your company “© e sl il
grOWS . Groups g Add Change -
o more users of admin
o more data
- large tables can be a problem e BT M
> default behavior on click is :(sk i R SUUSLE
Businesss dAdd < Change
Cards dAdd Change
Feature logs dAdd Change
Product version historys # Change
Product versions dAdd Change
Promotions dAdd Change
Rewards dAdd Change
Shipped hardwares dAdd Change
User profiles # Change

Departments deAdd < Change

ADMIN PROBLEM 1
I

Counting is easy...

ADMIN PROBLEM 1

| got 99 million problems and a large
table is one.

.-.,

ADMIN PROBLEM 1
I

What's the first thing you need to know when you paginate?

2 31(14]...] 149251 149252 14925200 accounts

The total number

COUNT () core_account

On a local db, 19.5 million rows took ~4 mins

ADMIN PROBLEM 1
I

One more thing, that default page...

"message_messagelog"."id", "message_messagelog"."campaign_id", "
message_messagelog"."created_at", "message_messagelog"."business_id", "
message_messagelog"."business_group_id", "message_messagelog"."”
general_context", "message_messagelog"."message_type", "message_messagelog".
"message", "message messagelog"."scheduled_at", "message_messagelog"."

sent_at", "message_messagelog"."subject", "message messagelog"."task_id", "
message_messagelog"."tracker_uid", "message messagelog"."transaction_uid", ™
message_messagelog"."uid", "message_messagelog"."status" &
message_messagelog" "message_messagelog"."id" 180

Looks innocent enough, but that order by....that's sorting the whole thing
to give you the last 100

ADMIN PROBLEM 1 - SOLUTION
I

We can do much better.

reltuples pg_class rel_name = ‘core_account'

This pulls an estimate from the last vacuum.
On the same local database, same rows, 0.069 ms.

Override default admin pagination.

https://djangosnippets.org/snippets/2593/

ADMIN SEARCH
I

Q, django Go

This seems harmless, but what happens when you have 3 search
fields

‘core_account’

(
UPPER('core_account'.'id'::text) = UPPER('%SEARCH_TERM%')

UPPER('core_account'. 'phone'::text) = UPPER('%SEARCH_TERMS%")
UPPERL'core_account'.'namd'::textl UPPER('%SEARCH_TERMS"')

‘core_account’., 'id’

NOOOOOOOOO

« These are full table scans

* The uppers prevent using indexes

SEARCH FIX
]

e Override the
queryset
Override
admin/search_
form.html to
add a
dropdown

class FiveStarsAdmin(admin.ModelAdmin):
paginator = LargeTablePaginator

def get_changelist(self, request, *xkwargs):
LargeTableChangeList

def queryset(self, request, *xkwargs):
qs = super(FiveStarsAdmin, self).queryset(request)
query_string = request.META.get("QUERY_STRING", None)
query_string:
query_list = query_string.split("&")

field = query_list[0][2:]

len(query_list) > 1:
search = query_list[1]
search:
search = urllib.unquote(search[2:]).decode('utf8').replacel(
Il+ll, 1] Il)
"name" field:
field "__icontains"
qs.filter(++{field: search})

gs

Foreign Key Follow

L b e A

 Avoid scans

« Use foreign keys where you
can

Foreign Key Example

4828 logs =
Messagelog.objects.filter(campaign__uid=params.get("campaign"},
4829 business_group_ uid=params.get("business_group"))

Pros: readable, clear what we are looking for
Cons: large table scan on non-indexed fields,
web request times out

4828 follower =
random.choice(settings.API_FOLLOWER_DATABASES)

4829 campaign_uid = params.get("campaign")

4830 business_group_uid = params.get("business_group")

4831 logs = (CampaignSubscription.objects.using(follower)

4832 .get(business_group__uid=business_group_uid,

4833 campaign__uid=campaign_uid,

deactivated on_ isnull=True)

4834 .campaign_data.logs.all())

- =

Pros: much faster, direct lookups by key, request
doesn’t time out
Cons: harder to read

What's the problem with this?

“core_point"."id", "core_point"."transaction", "core_point"."business_id",
“core_point"."account_id", ... <many many fields
core_point” “core_account™ ("core_point"."account_id"
core account"."id") “"core_userprofile” {"core account"."

profile_id" "core_userprofile"."id") ("core_point"."source" ‘Store
checkin' “core_point"."business_id" 25542) "core_point"."

created at™ 25

Limit Is silent killer

 |f your table is large and you can't
find 25 to meet your conditions...that’

s a table scan

 Add clauses to minimize the dataset
(date: last 2 weeks, etc)

Filter the noise a

KEEP
CALM

* Logs are noisy
« What can you optimize?

« What purpose does it serve to log it?

TURN DOWN
THE VOLUME

eeeeeeeeeeeeeeeee .com

Be still my heart

* Machine events

« What are the bulk of your requests?

Cache me if you can

TIME PICKER . SERVERS
Last 3 days ending now All servers

Sort by | Most time consuming

api_connectclient - SELECT
core_business - SELECT
core_usertype - SELECT
api_ctsclient - SELECT
core_account - SELECT

core_reward - SELECT

17%

15.5%

8.12%

5.91%

4.02%

3.92%

3.55%

3.12%

Top 5 database operations by wall clock time
600 %

Jun 29,
12:00 AM

core_featureflagstate -

SELECT

Jun 29, Jun 30, Jun 30,
12:00 PM 12:00 AM 12:00 PM

Jul 1,
12:00 AM

IOPS! Get your IOPS
here.

* Track your usage I OPS !

* Know your limits

« AWS RDS - GP2 vs PIOPS

At around 3k IOPS, we started to hit write latency

Write Operations (Count/Second) O | Q
Statistic: Average Time Range: Last2Weeks - Period: 5 Minutes ~
)
3,000
2,500

2,000

1,500

1,000

500

o]

08/07 06/09 08/11 0813 0B8M1S5 0817 0819

00:00 00:00 00:00 00:00 00:00 00:00 00:00
» CloudWatch Alarms: & 10 of 10 in OK Create Alarm

prod-api-follower || fivestarsprod-master | fivestarsprod-master-20160613

Write Latency (ms) 0 Q
Statistic: Average - Time Range: Last2Weeks v Period: 5 Minutes ~
(o
700
600
500
400
300 l
200
* Joam
0
06/06 08/07 08/08 06/09 06/10 06/11 08/12 06/13 06/14
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
» CloudWatch Alarms: & 10 of 10 in OK Create Alarm

prod-api-follower | fivestarsprod-master | fivestarsprod-master-20160613

Why?

e ORANGE was a 1TB GP2 drive
e GP2 follows rule -- 1TB ~ 3k IOPS, 2TB ~ 6k IOPS
e Too much time around 3k IOPS > throttling

]
AWS advice #1 -- expand drive. But write latency got worse!

Write Operations (Count/Second) o Q Write Latency (ms) + O Q
Statistic; Average v Time Range: Last2Weeks v Period: 5 Minutes v Statistic: Average Vv Time Range: Last2Weeks v Period: 5 Minutes v
SmTTTS N
3,500 (. N Bo.uorj X
4600 70,000
60,000
2,500
50,000
2,000
40,000
1,500
30,000
1,000 20,000
500 10,000
0 . i L _
08/07 08/09 06/11 08/13 06/15 06/17 06/19 06/07 06/09 06/11 06/13 06/15 0817 06/19
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
» CloudWatch Alarms: & 10 of 10 in OK Create Alarm » CloudWatch Alarms: @ 10 of 10 in OK Create Alarm
prod-api-follower | fivestarsprod-master | fivestarsprod-master-20160613 | prod-api-follower I fivestarsprod-master | fivestarsprod-master-20160613

4 e GREEN was our new larger drive, 3TB for 9k IOPS, but N
GREEN had far worse write latencies
e Why? EBS assigns its storage randomly, and performance
varies greatly by instance and datacenter due to blackbox
_ (noisy neighbors and hardware differences))

AWS advice #2 -- use PIOPS. Instead, we switched to EBS-
optimized and try a new GP2, while testing PIOPS

Write Operations (Count/Second) v

Last1 Week v

Statistic: Average Vv Time Range:

k.

G Q Write Latency (ms) v
Period: 5 Minutes v Statistic: Average v Time Range:
Crao
100
6
w0
2
0
aom) atm0 a0 oo
BLUE was our final master, an EBS-optimized m4.10xI \

Still using GP2, we started to see peaks around 120ms write
latency, instead of 10,000+ms

Conclusion? Use EBS-optimized AND re-roll your database

and EBS disk until you get in-band, acceptable performance
...and monitor how much IOPS you consume j

Last1 Week Vv

07/24
00:00

Period: 5 Minutes v

07/25
00:00

07/26
00:00

[99)
Jo)

THE FUTURE
I

What’s next for us?

« Splitting the database by app (vertical
partitioning)

» Add the URL to SQL statements for web
requests (better profiling)

o Add the celery task name to the SQL
statements

o Microservices with different datastores

» Better db connection pooling

o Upgrade django

THE BASICS
— The Django shell is your friend

@ @& 1. fivestars@bcb8526a134b; ~/code (docker)
» fivestars@bcbB526a.. 3E1

from core.models import Account

Thank you!

Questions?

Contact us:
www.fivestars.com
zachary.lopez@fivestars.com

recruiting@fivestars.com

FIVESTARS §°

http://www.fivestars.com
http://www.fivestars.com
mailto:zachary.lopez@fivestars.com
mailto:zachary.lopez@fivestars.com
mailto:recruiting@fivestars.com
mailto:recruiting@fivestars.com

